The Stock Visualizer : Leveraging Machine Learning for Enhanced Stock Market Analysis and Interactive Financial Insights

Authors(6) :-Alok Mishra, Dr. Razia Sultan, Atebar Haider, Vipin Rawat, M. B. Singh, B. N. Tiwari

The Stock Visualizer through Machine Learning is a tool that leverages machine learning techniques to analyze and visualize stock market data. It integrates data from sources like Yahoo Finance and Alpha Vantage, applies preprocessing and feature engineering, and uses models such as ARIMA, LSTM, and random forests for stock predictions and classifications. The system provides interactive visualizations of key financial metrics, including returns, volatility, and the efficient frontier. The tool also evaluates performance through metrics like the Sharpe ratio and offers portfolio optimization insights, aiding decision-making for both individual and institutional investors.

Authors and Affiliations

Alok Mishra
Assistant Professor, Department of Computer Science & Engineering, Ambalika Institute of Management & Technology, Lucknow, U.P, India
Dr. Razia Sultan
Assistant Professor, Department of Computer Science & Engineering, Ambalika Institute of Management & Technology, Lucknow, U.P, India
Atebar Haider
Associate Professor, Department of Computer Science & Engineering, Ambalika Institute of Management & Technology, Lucknow, U.P, India
Vipin Rawat
Assistant Professor, Department of Computer Science & Engineering, Ambalika Institute of Management & Technology, Lucknow, U.P, India
M. B. Singh
Assistant Professor, Department of Computer Science & Engineering, Ambalika Institute of Management & Technology, Lucknow, U.P, India
B. N. Tiwari
Assistant Professor, Department of Computer Science & Engineering, Ambalika Institute of Management & Technology, Lucknow, U.P, India

Stock Visualization, Machine Learning, Stock Predictions, Portfolio Optimization

  1. Bodie, Z., Kane, A., & Marcus, A. J. (2014). *Investments*. McGraw-Hill Education. 
  2. Nison, S. (1991). *Japanese Candlestick Charting Techniques*. Prentice Hall Press. 
  3. Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep Learning*. MIT Press. 
  4. Bishop, C. M. (2006). *Pattern Recognition and Machine Learning*. Springer. 
  5. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. *Neural Computation, 9*(8), 1735-1780. 
  6. Hyndman, R. J., & Athanasopoulos, G. (2018). *Forecasting: Principles and Practice*. OTexts. 
  7. Brown, R. G. (1962). *Smoothing, Forecasting, and Prediction of Discrete Time Series*. Prentice-Hall. 
  8. Box, G. E. P., & Jenkins, G. M. (1976). *Time Series Analysis: Forecasting and Control*. Holden-Day. 
  9. Wilder, J. W. (1978). *New Concepts in Technical Trading Systems*. Trend Research. 
  10. Appel, G. (1979). *The Moving Average Convergence Divergence Trading Method*. Signalert Corporation. 
  11. Domingos, P. (2012). A few useful things to know about machine learning. *Communications of the ACM, 55*(10), 78-87. 
  12. Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. *Statistics Surveys, 4*, 40-79. 
  13. Few, S. (2006). *Information Dashboard Design: The Effective Visual Communication of Data*. O'Reilly Media. 
  14. Wilkinson, L., Anand, A., & Grossman, R. (2005). Graph-theoretic scagnostics. *Proceedings - IEEE Symposium on Information Visualization*. 
  15. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. *Computing in Science & Engineering, 9*(3), 90-95. 
  16. Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The Elements of Statistical Learning*. Springer. 
  17. Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). *Applied Linear Regression Models*. McGraw-Hill/Irwin. 

Publication Details

Published in : Volume 7 | Issue 1 | January-February 2020
Date of Publication : 2020-02-20
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 336-342
Manuscript Number : IJSRST162811
Publisher : Technoscience Academy

Print ISSN : 2395-6011, Online ISSN : 2395-602X

Cite This Article :

Alok Mishra, Dr. Razia Sultan, Atebar Haider, Vipin Rawat, M. B. Singh, B. N. Tiwari, " The Stock Visualizer : Leveraging Machine Learning for Enhanced Stock Market Analysis and Interactive Financial Insights", International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN : 2395-6011, Online ISSN : 2395-602X, Volume 7, Issue 1, pp.336-342, January-February-2020.
Journal URL : https://ijsrst.com/IJSRST162811
Citation Detection and Elimination     |      | | BibTeX | RIS | CSV

Article Preview